This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

STEREOCHEMISTRY OF COMPLEXES WITH N-ALKYLATED AMINO ACIDS. VII. CRYSTAL STRUCTURE OF BIS(N-tert-BUTYL-N-BENZYLGLYCINATO)COPPER(II). CONFORMATIONAL ANALYSIS AND MOLECULAR MECHANICS CALCULATIONS

B. Kaitner^{ab}; G. Ferguson^a; N. Paulić^c; N. Raos^c

^a Department of Chemistry and Biochemistry, University of Geulph, Guelph, Ontario, Canada ^b Laboratory for General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia ^c Laboratory for Analytical and Physical Chemistry, Institute for Medical Research and Occupational Health, Zagreb, Croatia

To cite this Article Kaitner, B., Ferguson, G., Paulić, N. and Raos, N.(1993) 'STEREOCHEMISTRY OF COMPLEXES WITH N-ALKYLATED AMINO ACIDS. VII. CRYSTAL STRUCTURE OF BIS(N-tert-BUTYL-N-BENZYLGLYCINATO)COPPER(II). CONFORMATIONAL ANALYSIS AND MOLECULAR MECHANICS CALCULATIONS', Journal of Coordination Chemistry, 29: 3, 247 – 255

To link to this Article: DOI: 10.1080/00958979308045671 URL: http://dx.doi.org/10.1080/00958979308045671

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem. 1993, Vol. 29, pp. 247–255 Reprints available directly from the publisher Photocopying permitted by license only

STEREOCHEMISTRY OF COMPLEXES WITH N-ALKYLATED AMINO ACIDS. VII. CRYSTAL STRUCTURE OF BIS(N-tert-BUTYL-N-BENZYLGLYCINATO)COPPER(II). CONFORMATIONAL ANALYSIS AND MOLECULAR MECHANICS CALCULATIONS

B. KAITNER,* G. FERGUSON†

Department of Chemistry and Biochemistry, University of Geulph, Guelph, Ontario, Canada

N. PAULIĆ and N. RAOS

Laboratory for Analytical and Physical Chemistry, Institute for Medical Research and Occupational Health, Zagreb, Croatia

(Received 29 September 1992)

The structure of the red, monoclinic modification of bis(*N*-tert-butyl-*N*-benzylglycynato)copper(II) was solved by X-ray diffraction analysis and refined to R = 0.044. The structure is made up of discrete molecules with the copper atom (situated at an inversion centre) having square-planar coordination with oxygen and nitrogen atoms in *trans* positions with Cu-O 187.4(2) and Cu-N 2.112(3)Å. The results of molecular mechanics calculations reveal that the crystal conformation has about 13 kJ mol⁻¹ higher energy than the lowest energy conformation. This suggests the influence of intra- and intermolecular interactions in defining the molecular conformation.

KEY WORDS: bis(*N-tert*-butyl-*N*-benzylglycynato)copper(II), X-ray structure, conformational analysis, molecular mechanics.

INTRODUCTION

Among the chelates of copper(II) with α -amino acids and their N-alkylated and N,N-dialkylated derivatives, only few are truly tetracoordinated, i.e., they do not display apical coordination (via side group on C^{α}-tom, water molecule or carboxylic oxygen from a neighbouring molecule). If there are bulky groups bound to the C^{α}-atom or to nitrogen, severe distortion of coordination polyhedron takes place.¹⁻⁷ Centrosymmetric molecules, however, usually conserve their strictly planar coordination even if very high steric strain is generated due to close approach of bulky groups.⁸⁻¹⁰

^{*} Permanent address: Laboratory for General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia.

The principal aim of our research is to develop a molecular mechanics model which should predict the most probable conformation of copper(II) bis-chelates and α -amino acids to be expected in the crystal state, reproduce the diastereoselectivity (enantioselectivity)* effect as observed in nonaqueous solution,¹¹ and reproduce as accurately as possible the exact geometry of the complex, especially the shape of copper(II) coordination polyhedron. For the latter purpose, two novel empirical models were proposed. The first of them is based on a new function for conformational potential dependent on distortion coordinates.¹²⁻¹⁴

The second model treats interactions in the first coordination sphere (among the four ligand atoms and two apically placed charges) as being purely electrostatic.¹⁵ Both models proved adequate in reproducing the shape of the coordination polyhedron of copper(II) bis-chelates with α -amino acids^{7,13,15} and the enantioselectivity effect in the copper(II)/N,N-dimethylvaline system.^{7,15}

The title compound, bis(N-tert-butyl-N-benzylglycynato)copper(II), is designed to study the influence of bulky groups bound to nitrogen on molecular conformation. In the case of a similar compound, bis(N-tert-butyl-N-methylglycinato)aquacopper(II),¹⁶ molecular mechanics calculations correctly predicted the conformation of the molecule as observed in the crystal lattice. Unfortunately, our calculations were not so successful in predicting the shape of the coordination polyhedron, which was explained in terms of the influence of intermolecular hydrogen bonding. In this paper we have chosen a sterically hindered molecule in order to study the influence of bulky groups on molecular conformation, as well as on crystal packing.

EXPERIMENTAL

The ligand, *N-tert*-butyl-*N*-benzylglycine, was prepared by reaction of *N-tert*butylglycine (the preparation of this substance is described elsewhere)¹⁷ with benzylchloride.¹⁸ The oily product was extracted with CHCl₃, remaining benzylalcohol removed by distillation (49–52°, 10 Torr) and the residue (benzyl ester of *N-tert*-butyl-*N*-benzylglycine; yield 68%) was hydrolyzed in 20% KOH/propylenglycol solution. The salt was converted to the acid by addition of HAc to pH = 2, and this was extracted with chloroform which was dried over MgSO₄. After evaporation of chloroform (60°C), the final product was obtained in the form of a volatile oil (total yield 63%) which was characterized by mass spectroscopy and nitrogen analysis. The complex was prepared by reaction of copper(II) acetate monohydrate and the sodium salt of *N-tert*-butyl-*N*-benzylglycine in CH₂Cl₂ solution.¹⁹

Crystal structure determination

 $C_{26}H_{36}CuN_2O_4$, $M_r = 504.13$, monoclinic, space group $P2_1/a$, a = 7.862(2), b = 16.654(3), c = 10.104(2)Å, $\beta = 112.52(2)^\circ$, V = 1222.1(5)Å³, Z = 2, $D_x = 1.37$ g cm⁻³, F(000) = 534, $\lambda = 0.7093$ Å, $\mu(MoK\alpha) = 9.3$ cm⁻¹.

^{*} $\Delta G = -RTln(\beta_{MLL}/\beta_{MDL})$, where β is the cumulative stability constant of the corresponding bis-complex with natural (L) or enantiomeric (D) form of the amino acid.

A red prism-shaped crystal of dimensions $0.37 \times 0.35 \times 0.24$ mm was used for data collection on an Enraf-Nonius CAD4 diffractometer with MoK α radiation. Cell parameters were determined from the setting angles of 25 reflections in the range $5 < \theta < 17^{\circ}$. A total of 5872 intensities were collected in the range $4 < 2\theta < 54^{\circ}$ using the θ -2 θ scan mode (*hkl* range of reflections -10 to 9, 0 to 21, 0 to 12), of which 2730 were unique ($R_{int} = 0.043$) and not systematically absent. The 1715 reflections with $I \ge 3\sigma(I)$ were considered observed and used in structure solution and refinement. Three standard reflections monitored periodically throughout the data collection showed no evidence of crystal decay. Intensities were corrected for Lorentz and polarization effects. An empirical absorption correction was applied using the DIFABS program in SDP-Plus.^{20,21} The space group was determined uniquely from systematic absences h0l: h=2n and 0k0: k=2n. The structure was solved by means of the heavy-atom method. A difference Fourier synthesis based on the copper atom position revealed the position of all non-hydrogen atoms. The positions of the hydrogen atoms were calculated on geometrical grounds with C-H = 0.95Å. Full-matrix least-squares anisotropic refinement of positional and thermal parameters of non-hydrogen atoms only led to convergence with R = 0.044, $R_w = 0.056$ and GOF = 1.83 for 151 variables with $w = 1/(\sigma^2 F_o + 0.055 F_o^2)$. A final difference Fourier map showed no significant features ($\rho_{\max,\min} = \pm 0.67 \text{e}^{\text{A}^{-3}}$); largest $\Delta/\sigma = 0.069$. Atomic scattering factors were provided by *SDP-Plus*.²¹ Calculations were carried out on *PDP*11/73 computer using SDP-Plus and on a PC 386 personal computer using NRCVAX.^{21,22} Table 1 lists atomic coordinates and equivalent isotropic thermal parameters and Table 2 gives bond lengths, valence angles and selected torsion angles. Figure 1 is an ORTEPII²³ presentation of the molecule in a general orientation.

	x/a	y/b	z/c	B _{eq} *
Cu	0	0	0	2.22(1)
01	2269(3)	535(2)	678(2)	2.68(5)
O2	3682(3)	1669(2)	1647(3)	4.08(7)
N1	-933(4)	962(2)	907(3)	2.05(6)
C1	2307(4)	1254(2)	1171(4)	2.46(8)
C2	468(5)	1589(2)	1046(4)	2.68(8)
C3	-937(5)	718(2)	2386(4)	2.83(8)
C4	-2148(8)	3(4)	2229(4)	7.3(1)
C5	-1626(6)	1391(3)	3070(4)	4.4(1)
C6	1018(7)	519(4)	3371(5)	7.5(1)
C7	- 2834(5)	1281(2)	-24(4)	2.72(8)
C11	- 3085(4)	1522(2)	-1527(4)	2.72(8)
C12	-2773(6)	2304(3)	-1845(4)	3.6(1)
C13	- 3086(7)	2538(3)	- 3235(5)	4.9(1)
C14	-3747(7)	1991(3)	-4319(4)	5.7(1)
C15	-4119(7)	1226(3)	-4050(5)	5.2(1)
C16	- 3792(6)	988(3)	-2652(4)	3.8(1)

Table 1 Final positional parameters $(\times 10^4)$ and equivalent isotropic thermal coefficients $B_{eq}(Å^2)$

*Anisotropically refined atoms are given the form of the isotropic equivalent thermal parameter defined as $4/3[a^2B_{11}+b^2B_{22}+c^2B_{33}+abcos\gamma B_{12}+accos\beta B_{13}+bccos\alpha B_{23}]$.

B. KAITNER ET AL.

Table 2 Selected bond lengths (Å), valence and torsionangles (°) for bis(N-tert-butyl-N-benzylgly cinato)copper(II)

Bond lengths Cu-O1 $1.874(2)$ 1.999 Cu-N1 $2.112(3)$ 2.087 OI-C1 $1.293(4)$ 1.274 O2-C1 $1.215(4)$ 1.241 NI-C2 $1.484(5)$ 1.488 NI-C3 $1.550(5)$ 1.511 NI-C7 $1.525(4)$ 1.498 C1-C2 $1.509(5)$ 1.513 C3-C4 $1.494(7)$ 1.554 C3-C5 $1.522(7)$ 1.557 C3-C6 $1.514(5)$ 1.552 C7-C11 $1.509(5)$ 1.536 C11-C12 $1.386(6)$ 1.411 C11-C12 $1.386(7)$ 1.404 C13-C14 $1.355(7)$ 1.404 C14-C15 $1.337(8)$ 1.404 C14-C15 $1.394(7)$ 1.406 Bond angles 01-Cu-N1 $85.4(1)$ 85.6 O1-Cu-N1 $85.4(1)$ 94.5 Cu-O1-C1 $117.4(2)$ 111.1 Cu-N1-C2 1		Experimental*	Theoretical (M6)
$\begin{array}{c} {\rm Cu-O1} & 1.874(2) & 1.999 \\ {\rm Cu-N1} & 2.112(3) & 2.087 \\ {\rm O1-C1} & 1.293(4) & 1.274 \\ {\rm O2-C1} & 1.215(4) & 1.241 \\ {\rm N1-C2} & 1.484(5) & 1.488 \\ {\rm N1-C3} & 1.550(5) & 1.511 \\ {\rm N1-C7} & 1.525(4) & 1.498 \\ {\rm C1-C2} & 1.509(5) & 1.513 \\ {\rm C3-C4} & 1.494(7) & 1.554 \\ {\rm C3-C5} & 1.522(7) & 1.557 \\ {\rm C3-C6} & 1.514(5) & 1.552 \\ {\rm C7-C11} & 1.509(5) & 1.536 \\ {\rm C11-C12} & 1.386(6) & 1.411 \\ {\rm C11-C16} & 1.381(5) & 1.407 \\ {\rm C12-C13} & 1.385(7) & 1.405 \\ {\rm C13-C14} & 1.365(7) & 1.404 \\ {\rm C15-C16} & 1.394(7) & 1.406 \\ \end{array}$	Bond lengths		
Cu-N1 $2.112(3)$ 2.087 OI-C1 $1.293(4)$ 1.274 O2-C1 $1.215(4)$ 1.241 NI-C2 $1.484(5)$ 1.488 NI-C3 $1.550(5)$ 1.511 NI-C7 $1.525(4)$ 1.498 C1-C2 $1.509(5)$ 1.513 C3-C4 $1.494(7)$ 1.554 C3-C5 $1.522(7)$ 1.557 C3-C6 $1.514(5)$ 1.552 C7-C11 $1.509(5)$ 1.536 C11-C12 $1.386(6)$ 1.411 C11-C12 $1.386(6)$ 1.407 C12-C13 $1.385(7)$ 1.405 C13-C14 $1.365(7)$ 1.404 C14-C15 $1.357(8)$ 1.404 C15-C16 $1.394(7)$ 1.406 Bond angles O1-Cu-N1 $85.4(1)$ 85.6 O1-Cu-N1 $85.4(1)$ 94.6 1.23 Cu-N1-C3 $110.4(2)$ 10.3 10.5 Cu-N1-C3 1	Cu-O1	1.874(2)	1.999
$\begin{array}{ccccccc} 01-C1 & 1.293(4) & 1.274 \\ 02-C1 & 1.215(4) & 1.241 \\ N1-C2 & 1.484(5) & 1.488 \\ N1-C3 & 1.550(5) & 1.511 \\ N1-C7 & 1.525(4) & 1.498 \\ C1-C2 & 1.509(5) & 1.513 \\ C3-C4 & 1.494(7) & 1.554 \\ C3-C5 & 1.522(7) & 1.557 \\ C3-C6 & 1.514(5) & 1.552 \\ C7-C11 & 1.509(5) & 1.536 \\ C11-C12 & 1.386(6) & 1.411 \\ C11-C16 & 1.381(5) & 1.407 \\ C12-C13 & 1.385(7) & 1.405 \\ C13-C14 & 1.365(7) & 1.404 \\ C14-C15 & 1.357(8) & 1.404 \\ C14-C15 & 1.357(8) & 1.404 \\ C15-C16 & 1.394(7) & 1.406 \\ Bond angles \\ \hline O1-Cu-N1 & 85.4(1) & 85.6 \\ O1-Cu-N1 & 85.4(1) & 85.6 \\ O1-Cu-N1 & 85.4(1) & 85.6 \\ O1-Cu-N1 & 94.6(1) & 94.4 \\ Cu-O1-C1 & 117.4(2) & 111.1 \\ Cu-N1-C2 & 101.9(2) & 102.3 \\ Cu-N1-C7 & 114.7(2) & 112.3 \\ C2-N1-C7 & 109.3(3) & 109.9 \\ C3-N1-C7 & 109.3(3) & 109.9 \\ C3-N1-C7 & 108.8(3) & 111.0 \\ O1-C1-O2 & 124.3(4) & 119.6 \\ O1-C1-C2 & 115.4(3) & 110.7 \\ N1-C3-C4 & 110.1(3) & 110.5 \\ N1-C3-C5 & 112.2(3) & 121.3 \\ N1-C2-C1 & 113.6(3) & 110.7 \\ N1-C3-C6 & 108.4(4) & 112.7 \\ C4-C3-C5 & 108.2(4) & 107.4 \\ C4-C3-C6 & 109.9(4) & 106.6 \\ C5-C3-C6 & 108.1(3) & 106.9 \\ N1-C7-C11 & 115.7(3) & 115.6 \\ C7-C11-C12 & 121.1(3) & 120.8 \\ C7-C11-C12 & 120.7(4) & 119.9 \\ C13-C14-C15 & 120.7(4) & 119.6 \\ C14-C15-C16 & 120.9(4) & 120.7 \\ Torsion angles \\ \hline O1-Cu-N1-C3 & -99.4(2) & -96.8 \\ N1-Cu-O1-C1 & -9.6(2) & -5.8 \\ Cu-O1-C1-C2 & -3.7(4) & -13.9 \\ Cu-N1-C2-C1 & -25.7(3) & -33.6 \\ \hline \end{array}$	Cu-N1	2.112(3)	2.087
$\begin{array}{cccccc} 02-C1 & 1.215(4) & 1.241 \\ \text{N1-C2} & 1.484(5) & 1.488 \\ \text{N1-C3} & 1.550(5) & 1.511 \\ \text{N1-C7} & 1.525(4) & 1.498 \\ \text{C1-C2} & 1.509(5) & 1.513 \\ \text{C3-C4} & 1.494(7) & 1.554 \\ \text{C3-C5} & 1.522(7) & 1.557 \\ \text{C3-C6} & 1.514(5) & 1.552 \\ \text{C7-C11} & 1.509(5) & 1.536 \\ \text{C11-C12} & 1.386(6) & 1.411 \\ \text{C11-C16} & 1.381(5) & 1.407 \\ \text{C12-C13} & 1.385(7) & 1.405 \\ \text{C13-C14} & 1.365(7) & 1.404 \\ \text{C14-C15} & 1.357(8) & 1.404 \\ \text{C15-C16} & 1.394(7) & 1.406 \\ \hline Bond angles \\ \hline O1-Cu-N1 & 85.4(1) & 85.6 \\ O1-Cu-N1 & 2109(2) & 102.3 \\ Cu-N1-C2 & 1019(2) & 102.3 \\ Cu-N1-C2 & 1019(2) & 102.3 \\ Cu-N1-C3 & 110.4(2) & 108.5 \\ Cu-N1-C7 & 114.7(2) & 112.3 \\ C2-N1-C3 & 111.6(2) & 112.5 \\ C2-N1-C7 & 109.3(3) & 109.9 \\ C3-N1-C7 & 108.8(3) & 111.0 \\ O1-C1-O2 & 124.3(4) & 119.6 \\ O1-C1-C2 & 124.3(4) & 119.6 \\ O1-C1-C2 & 120.1(3) & 121.3 \\ N1-C2-C1 & 113.6(3) & 110.7 \\ N1-C3-C4 & 110.1(3) & 110.5 \\ N1-C3-C5 & 112.2(3) & 112.5 \\ N1-C3-C6 & 108.4(4) & 112.7 \\ C4-C3-C6 & 109.9(4) & 106.6 \\ C5-C3-C6 & 108.1(3) & 106.9 \\ N1-C7-C11 & 115.7(3) & 115.6 \\ C7-C11-C12 & 121.1(3) & 120.8 \\ C7-C11-C16 & 117.7(4) & 118.1 \\ C11-C12-C13 & 121.4(4) & 120.9 \\ C12-C13-C14 & 119.5(5) & 119.9 \\ C13-C14-C15 & 120.7(4) & 119.6 \\ C14-C15-C16 & 120.9(4) & 120.7 \\ \hline Torsion angles \\ \hline O1-Cu-N1-C3 & -99.4(2) & -96.8 \\ N1-Cu-O1-C1 & -9.6(2) & -5.8 \\ Cu-O1-C1-C2 & -3.7(4) & -13.9 \\ Cu-N1-C2-C1 & -25.7(3) & -33.6 \\ \hline \end{array}$	01-C1	1.293(4)	1.274
N1-C2 1.484(5) 1.488 N1-C3 1.550(5) 1.511 N1-C7 1.525(4) 1.498 C1-C2 1.509(5) 1.513 C3-C4 1.494(7) 1.554 C3-C5 1.522(7) 1.557 C3-C6 1.514(5) 1.536 C11-C12 1.386(6) 1.411 C11-C12 1.385(7) 1.405 C13-C14 1.365(7) 1.404 C14-C15 1.357(8) 1.404 C15-C16 1.394(7) 1.406 Bond angles 01-Cu-N1 85.4(1) 85.6 O1-Cu-N1 94.6(1) 94.4 Cu-O1-C1 Cu-O1-C1 117.4(2) 111.1 1.1 Cu-N1-C2 101.9(2) 102.3 Cu-N1-C3 Cu-N1-C3 110.4(2) 108.5 Cu-N1-C7 Cu-N1-C3 110.4(2) 108.5 Cu-N1-C7 Cu-N1-C7 109.3(3) 109.9 C3-N1-C7 109.3(3) 109.9 C3-N1-C7 109.3(3) 109.9 C3-N1-C7 108.5(3) 110.7 N1-C	O2-C1	1.215(4)	1.241
N1-C3 $1.550(5)$ 1.511 N1-C7 $1.525(4)$ 1.498 C1-C2 $1.509(5)$ 1.513 C3-C4 $1.494(7)$ 1.554 C3-C5 $1.522(7)$ 1.557 C3-C6 $1.514(5)$ 1.552 C7-C11 $1.509(5)$ 1.536 C11-C12 $1.386(6)$ 1.411 C1-C16 $1.381(5)$ 1.407 C12-C13 $1.385(7)$ 1.405 C13-C14 $1.365(7)$ 1.404 C14-C15 $1.377(8)$ 1.404 C15-C16 $1.394(7)$ 1.406 Bond angles 01 -Cu-N1 $85.4(1)$ 85.6 O1-Cu-N1 $85.4(1)$ 85.6 O1-Cu-N1 $85.4(1)$ 94.4 Cu-O1-C1 $117.4(2)$ 111.1 Cu-N1-C3 $110.4(2)$ 108.5 Cu-N1-C3 $110.4(2)$ 108.5 Cu-N1-C3 $110.4(2)$ 108.5 Cu-N1-C7 $114.7(2)$ 112.3 C2-N1-C7 $109.3(3)$ 109.9 C3-N1-C7 $108.8(3)$ 111.0 O1-C1-O2 $124.3(4)$ 119.6 O1-C1-C2 $115.4(3)$ 119.2 O2-C1-C2 $120.1(3)$ 121.3 N1-C3-C4 $110.1(3)$ 110.5 N1-C3-C5 $112.2(3)$ 112.5 N1-C3-C6 $108.4(4)$ 112.7 C4-C3-C5 $108.2(4)$ 107.4 C4-C3-C6 $109.9(4)$ 106.6 C5-C3-C6 $108.1(3)$ 106.9 N1-C7-C11 $115.7(3)$ 115.6 C7-C11-C12 $121.1($	N1-C2	1.484(5)	1.488
N1-C7 $1.525(4)$ 1.498 C1-C2 $1.509(5)$ 1.513 C3-C4 $1.494(7)$ 1.554 C3-C5 $1.522(7)$ 1.557 C3-C6 $1.514(5)$ 1.552 C7-C11 $1.509(5)$ 1.536 C11-C12 $1.386(6)$ 1.411 C1-C16 $1.381(5)$ 1.407 C12-C13 $1.385(7)$ 1.404 C14-C15 $1.357(8)$ 1.404 C15-C16 $1.394(7)$ 1.406 Bond angles 01 -Cu-N1 $85.4(1)$ 85.6 O1-Cu-N1 $85.4(1)$ 85.6 O1-Cu-N1* $94.6(1)$ 94.4 Cu-O1-C1 $117.4(2)$ 111.1 Cu-N1-C3 $110.4(2)$ 108.5 Cu-N1-C3 $110.4(2)$ 108.5 Cu-N1-C3 $110.4(2)$ 112.5 C2-N1-C7 $109.3(3)$ 109.9 C3-N1-C7 $108.8(3)$ 111.0 O1-C1-O2 $124.3(4)$ 119.6 O1-C1-C2 $115.4(3)$ 119.2 O2-C1-C2 $120.1(3)$ 121.3 N1-C2-C1 $113.6(3)$ 110.7 N1-C3-C4 $110.1(3)$ 110.5 N1-C3-C5 $112.2(3)$ 112.5 N1-C3-C6 $108.4(4)$ 112.7 C4-C3-C6 $109.9(4)$ 106.6 C5-C3-C6 $108.2(4)$ 107.4 C4-C3-C6 $109.9(4)$ 106.6 C5-C3-C6 $108.1(3)$ 106.9 N1-C7-C11 $115.7(3)$ 115.6 C7-C11-C12 $121.1(3)$ 120.8 C12-C13-C14 <td< td=""><td>N1-C3</td><td>1.550(5)</td><td>1.511</td></td<>	N1-C3	1.550(5)	1.511
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C7	1.525(4)	1.498
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C2	1.509(5)	1.513
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C4	1.494(7)	1.554
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C5	1.522(7)	1.557
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C6	1.514(5)	1.552
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-C11	1.509(5)	1.536
$\begin{array}{cccccc} {\rm C11-C16} & 1.381(5) & 1.407\\ {\rm C12-C13} & 1.385(7) & 1.405\\ {\rm C13-C14} & 1.365(7) & 1.404\\ {\rm C14-C15} & 1.357(8) & 1.404\\ {\rm C15-C16} & 1.394(7) & 1.406\\ \hline \\ \hline Bond angles \\ \hline \\ \hline \\ {\rm O1-Cu-N1} & 85.4(1) & 85.6\\ {\rm O1-Cu-N1}^* & 94.6(1) & 94.4\\ {\rm Cu-O1-C1} & 117.4(2) & 111.1\\ {\rm Cu-N1-C2} & 101.9(2) & 102.3\\ {\rm Cu-N1-C3} & 110.4(2) & 108.5\\ {\rm Cu-N1-C3} & 110.4(2) & 108.5\\ {\rm Cu-N1-C7} & 114.7(2) & 112.3\\ {\rm C2-N1-C3} & 111.6(2) & 112.5\\ {\rm C2-N1-C7} & 109.3(3) & 109.9\\ {\rm C3-N1-C7} & 108.8(3) & 111.0\\ {\rm O1-C1-O2} & 124.3(4) & 119.6\\ {\rm O1-C1-C2} & 115.4(3) & 119.2\\ {\rm O2-C1-C2} & 120.1(3) & 121.3\\ {\rm N1-C2-C1} & 113.6(3) & 110.7\\ {\rm N1-C3-C4} & 110.1(3) & 110.5\\ {\rm N1-C3-C5} & 112.2(3) & 112.5\\ {\rm N1-C3-C6} & 108.4(4) & 112.7\\ {\rm C4-C3-C5} & 108.2(4) & 107.4\\ {\rm C4-C3-C6} & 109.9(4) & 106.6\\ {\rm C5-C3-C6} & 108.1(3) & 106.9\\ {\rm N1-C7-C11} & 115.7(3) & 115.6\\ {\rm C7-C11-C12} & 121.1(3) & 120.8\\ {\rm C7-C11-C16} & 120.9(4) & 120.9\\ {\rm C12-C1-C16} & 117.7(4) & 118.1\\ {\rm C11-C12-C13} & 121.4(4) & 120.8\\ {\rm C12-C13-C14} & 119.5(5) & 119.9\\ {\rm C13-C14-C15} & 120.7(4) & 119.6\\ {\rm C14-C15-C16} & 120.9(4) & 120.0\\ {\rm C14-C15-C16} & 120.9(4) & 120.0\\ {\rm C11-C1-C2} & -3.7(4) & -96.8\\ {\rm N1-Cu-O1-C1} & -9.6(2) & -5.8\\ {\rm Cu-O1-C1-C2} & -3.7(4) & -13.9\\ {\rm Cu-N1-C2-C1} & -25.7(3) & -33.6\\ \end{array}$	C11-C12	1.386(6)	1.411
$\begin{array}{ccccccc} C12-C13 & 1.385(7) & 1.405 \\ C13-C14 & 1.365(7) & 1.404 \\ C14-C15 & 1.357(8) & 1.404 \\ C15-C16 & 1.394(7) & 1.406 \\ \hline Bond angles \\ \hline \\ \hline \\ O1-Cu-N1 & 85.4(1) & 85.6 \\ O1-Cu-N1* & 94.6(1) & 94.4 \\ Cu-O1-C1 & 117.4(2) & 111.1 \\ Cu-N1-C2 & 101.9(2) & 102.3 \\ Cu-N1-C3 & 110.4(2) & 108.5 \\ Cu-N1-C7 & 114.7(2) & 112.3 \\ C2-N1-C7 & 109.3(3) & 109.9 \\ C3-N1-C7 & 109.3(3) & 109.9 \\ C3-N1-C7 & 108.8(3) & 111.0 \\ O1-C1-O2 & 124.3(4) & 119.6 \\ O1-C1-C2 & 115.4(3) & 119.2 \\ O2-C1-C2 & 120.1(3) & 121.3 \\ N1-C2-C1 & 113.6(3) & 110.7 \\ N1-C3-C4 & 110.1(3) & 110.5 \\ N1-C3-C5 & 112.2(3) & 112.5 \\ N1-C3-C6 & 108.4(4) & 112.7 \\ C4-C3-C5 & 108.2(4) & 107.4 \\ C4-C3-C6 & 109.9(4) & 106.6 \\ C5-C3-C6 & 108.1(3) & 106.9 \\ N1-C7-C11 & 115.7(3) & 115.6 \\ C7-C11-C12 & 121.1(3) & 120.8 \\ C7-C11-C16 & 120.9(4) & 120.9 \\ C12-C11-C16 & 117.7(4) & 118.1 \\ C11-C12-C13 & 121.4(4) & 120.8 \\ C7-C11-C16 & 117.7(4) & 118.1 \\ C11-C12-C13 & 121.4(4) & 120.8 \\ C12-C13-C14 & 119.5(5) & 119.9 \\ C13-C14-C15 & 120.7(4) & 119.6 \\ C14-C15-C16 & 120.9(4) & 120.7 \\ \hline Torsion angles \\ \hline \end{array}$	C11-C16	1.381(5)	1.407
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-C13	1.385(7)	1.405
$\begin{array}{cccccc} C14-C15 & 1.357(8) & 1.404 \\ C15-C16 & 1.394(7) & 1.406 \\ \hline Bond angles \\ \hline \\ O1-Cu-N1 & 85.4(1) & 85.6 \\ O1-Cu-N1* & 94.6(1) & 94.4 \\ Cu-O1-C1 & 117.4(2) & 111.1 \\ Cu-N1-C2 & 101.9(2) & 102.3 \\ Cu-N1-C3 & 110.4(2) & 108.5 \\ Cu-N1-C7 & 114.7(2) & 112.3 \\ C2-N1-C3 & 111.6(2) & 112.5 \\ C2-N1-C7 & 109.3(3) & 109.9 \\ C3-N1-C7 & 108.8(3) & 111.0 \\ O1-C1-O2 & 124.3(4) & 119.6 \\ O1-C1-C2 & 115.4(3) & 119.2 \\ O2-C1-C2 & 120.1(3) & 121.3 \\ N1-C2-C1 & 113.6(3) & 110.7 \\ N1-C3-C4 & 110.1(3) & 110.5 \\ N1-C3-C5 & 112.2(3) & 112.5 \\ N1-C3-C6 & 108.4(4) & 112.7 \\ C4-C3-C5 & 108.2(4) & 107.4 \\ C4-C3-C6 & 109.9(4) & 106.6 \\ C5-C3-C6 & 108.1(3) & 106.9 \\ N1-C7-C11 & 115.7(3) & 115.6 \\ C7-C11-C12 & 121.1(3) & 120.8 \\ C7-C11-C16 & 117.7(4) & 118.1 \\ C11-C12-C13 & 121.4(4) & 120.8 \\ C12-C13-C14 & 119.5(5) & 119.9 \\ C13-C14-C15 & 120.7(4) & 119.6 \\ C14-C15-C16 & 120.9(4) & 120.7 \\ \hline Torsion angles \\ \hline O1-Cu-N1-C3 & -99.4(2) & -96.8 \\ N1-Cu-O1-C1 & -9.6(2) & -5.8 \\ Cu-O1-C1-C2 & -3.7(4) & -13.9 \\ Cu-N1-C2-C1 & -25.7(3) & -33.6 \\ \hline \end{array}$	C13-C14	1.365(7)	1.404
C15-C16 $1.394(7)$ 1.406 Bond anglesO1-Cu-N1 $85.4(1)$ 85.6 O1-Cu-N1* $94.6(1)$ 94.4 Cu-O1-C1 $117.4(2)$ 111.1 Cu-N1-C2 $101.9(2)$ 102.3 Cu-N1-C3 $110.4(2)$ 108.5 Cu-N1-C7 $114.7(2)$ 112.3 C2-N1-C3 $111.6(2)$ 112.5 C2-N1-C7 $109.3(3)$ 109.9 C3-N1-C7 $108.8(3)$ 111.0 O1-C1-O2 $124.3(4)$ 119.6 O1-C1-C2 $115.4(3)$ 119.2 O2-C1-C2 $120.1(3)$ 121.3 N1-C2-C1 $113.6(3)$ 110.7 N1-C3-C4 $110.1(3)$ 110.5 N1-C3-C5 $112.2(3)$ 112.5 N1-C3-C6 $108.4(4)$ 112.7 C4-C3-C5 $108.2(4)$ 107.4 C4-C3-C6 $109.9(4)$ 106.6 C5-C3-C6 $108.1(3)$ 106.9 N1-C7-C11 $115.7(3)$ 115.6 C7-C11-C12 $121.1(3)$ 120.8 C7-C11-C16 $117.7(4)$ 118.1 C11-C12-C13 $121.4(4)$ 120.8 C12-C13-C14 $119.5(5)$ 119.9 C13-C14-C15 $120.7(4)$ 120.7 Torsion angles 01 -Cu-N1-C3 $-99.4(2)$ -96.8 N1-Cu-O1-C1 $-9.6(2)$ -5.8 Cu-O1-C1 $-9.6(2)$ -5.8 Cu-O1-C1 $-9.6(2)$ -5.8 Cu-O1-C1-C2 $-3.7(4)$ -13.9 Cu-N1-C2-C1 $-25.7(3)$ -33.6	C14-C15	1.357(8)	1.404
Bond angles $O1-Cu-N1$ 85.4(1)85.6 $O1-Cu-N1^*$ 94.6(1)94.4 $Cu-O1-C1$ 117.4(2)111.1 $Cu-N1-C2$ 101.9(2)102.3 $Cu-N1-C3$ 110.4(2)108.5 $Cu-N1-C7$ 114.7(2)112.3 $C2-N1-C7$ 109.3(3)109.9 $C3-N1-C7$ 108.8(3)111.0 $O1-C1-O2$ 124.3(4)119.6 $O1-C1-C2$ 125.4(3)119.2 $O2-C1-C2$ 120.1(3)121.3 $N1-C2-C1$ 113.6(3)110.7 $N1-C3-C4$ 110.1(3)110.5 $N1-C3-C5$ 112.2(3)112.5 $N1-C3-C6$ 108.4(4)112.7 $C4-C3-C5$ 108.2(4)107.4 $C4-C3-C6$ 109.9(4)106.6 $C5-C3-C6$ 108.1(3)106.9 $N1-C7-C11$ 115.7(3)115.6 $C7-C11-C12$ 121.1(3)120.8 $C7-C11-C16$ 120.9(4)120.9 $C12-C13-C14$ 119.5(5)119.9 $C12-C13-C14$ 119.5(5)119.9 $C12-C13-C14$ 119.5(5)119.9 $C13-C14-C15$ 120.7(4)120.7Torsion angles $O1-Cu-N1-C3$ $-99.4(2)$ -96.8 $O1-Cu-N1-C3$ $-99.4(2)$ -96.8 $N1-C2-C1$ $-95.6(2)$ -5.8 $Cu-O1-C1-C2$ $-3.7(4)$ -13.9 $Cu-N1-C2-C1$ $-25.7(3)$ -33.6	C15-C16	1.394(7)	1.406
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bond angles		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1-Cu-N1	85.4(1)	85.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1-Cu-N1*	94.6(1)	94.4
Cu-N1-C2101.9(2)102.3Cu-N1-C3110.4(2)108.5Cu-N1-C7114.7(2)112.3C2-N1-C3111.6(2)112.5C2-N1-C7109.3(3)109.9C3-N1-C7108.8(3)111.0O1-C1-O2124.3(4)119.6O1-C1-C2115.4(3)119.2O2-C1-C2120.1(3)121.3N1-C2-C1113.6(3)110.7N1-C3-C4110.1(3)110.5N1-C3-C5112.2(3)112.5N1-C3-C6108.4(4)112.7C4-C3-C5108.2(4)107.4C4-C3-C6109.9(4)106.6C5-C3-C6108.1(3)106.9N1-C7-C11115.7(3)115.6C7-C11-C12121.1(3)120.8C7-C11-C16117.7(4)118.1C11-C12-C13121.4(4)120.8C12-C13-C14119.5(5)119.9C13-C14-C15120.7(4)119.6C14-C15-C16120.0(4)120.0C11-C16-C15120.7(4)120.7Torsion angles01-Cu-N1-C3 $-99.4(2)$ -96.8 N1-Cu-O1-C1 $-9.6(2)$ -5.8 Cu-O1-C1-C2 $-3.7(4)$ -13.9 Cu-N1-C2-C1 $-25.7(3)$ -33.6	Cu-O1-C1	117.4(2)	111.1
Cu-N1-C3 $110.4(2)$ 108.5 Cu-N1-C7 $114.7(2)$ 112.3 C2-N1-C3 $111.6(2)$ 112.5 C2-N1-C7 $109.3(3)$ 109.9 C3-N1-C7 $108.8(3)$ 111.0 O1-C1-O2 $124.3(4)$ 119.6 O1-C1-C2 $115.4(3)$ 119.2 O2-C1-C2 $120.1(3)$ 121.3 N1-C2-C1 $113.6(3)$ 110.7 N1-C3-C4 $110.1(3)$ 110.5 N1-C3-C5 $112.2(3)$ 112.5 N1-C3-C6 $108.4(4)$ 112.7 C4-C3-C5 $108.2(4)$ 107.4 C4-C3-C6 $109.9(4)$ 106.6 C5-C3-C6 $108.1(3)$ 106.9 N1-C7-C11 $115.7(3)$ 115.6 C7-C11-C12 $121.1(3)$ 120.8 C7-C11-C16 $120.9(4)$ 120.9 C12-C13-C14 $119.5(5)$ 119.9 C13-C14-C15 $120.7(4)$ 118.1 C11-C15-C16 $120.0(4)$ 120.0 C11-C16-C15 $120.7(4)$ 120.7 Torsion angles $01-Cu-N1-C3$ $-99.4(2)$ -96.8 N1-Cu-O1-C1 $-9.6(2)$ -5.8 Cu-O1-C1-C2 $-3.7(4)$ -13.9 Cu-N1-C2-C1 $-25.7(3)$ -33.6	Cu-N1-C2	101.9(2)	102.3
Cu-N1-C7 $114.7(2)$ 112.3 C2-N1-C3 $111.6(2)$ 112.5 C2-N1-C7 $109.3(3)$ 109.9 C3-N1-C7 $108.8(3)$ 111.0 O1-C1-O2 $124.3(4)$ 119.6 O1-C1-C2 $115.4(3)$ 119.2 O2-C1-C2 $120.1(3)$ 121.3 N1-C2-C1 $113.6(3)$ 110.7 N1-C3-C4 $110.1(3)$ 110.5 N1-C3-C5 $112.2(3)$ 112.5 N1-C3-C6 $108.4(4)$ 112.7 C4-C3-C5 $108.2(4)$ 107.4 C4-C3-C6 $109.9(4)$ 106.6 C5-C3-C6 $108.1(3)$ 106.9 N1-C7-C11 $115.7(3)$ 115.6 C7-C11-C16 $120.9(4)$ 120.9 C12-C11-C16 $117.7(4)$ 118.1 C11-C12-C13 $121.4(4)$ 120.8 C12-C13-C14 $119.5(5)$ 119.9 C13-C14-C15 $120.7(4)$ 119.6 C14-C15-C16 $120.0(4)$ 120.0 C11-C16-C15 $120.7(4)$ 120.7 Torsion angles $01-Cu-N1-C3$ $-99.4(2)$ -96.8 N1-Cu-O1-C1 $-9.6(2)$ -5.8 Cu-O1-C1-C2 $-3.7(4)$ -13.9 Cu-N1-C2-C1 $-25.7(3)$ -33.6	Cu-N1-C3	110.4(2)	108.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu-N1-C7	114.7(2)	112.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-N1-C3	111.6(2)	112.5
C3-N1-C7108.8(3)111.0O1-C1-O2124.3(4)119.6O1-C1-C2124.3(4)119.2O2-C1-C2120.1(3)121.3N1-C2-C1113.6(3)110.7N1-C3-C4110.1(3)110.5N1-C3-C5112.2(3)112.5N1-C3-C6108.4(4)112.7C4-C3-C5108.2(4)107.4C4-C3-C6109.9(4)106.6C5-C3-C6108.1(3)106.9N1-C7-C11115.7(3)115.6C7-C11-C12121.1(3)120.8C7-C11-C16120.9(4)120.9C12-C11-C16117.7(4)118.1C11-C12-C13121.4(4)120.8C12-C13-C14119.5(5)119.9C13-C14-C15120.7(4)119.6C14-C15-C16120.0(4)120.0C11-C16-C15120.7(4)120.7Torsion angles01-Cu-N1-C3 $-99.4(2)$ -96.8 N1-Cu-O1-C1 $-9.6(2)$ -5.8 Cu-O1-C1-C2 $-3.7(4)$ -13.9 Cu-N1-C2-C1 $-25.7(3)$ -33.6	C2-N1-C7	109.3(3)	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-N1-C7	108.8(3)	111.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01-C1-02	124 3(4)	119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01-C1-C2	115.4(3)	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2-C1-C2	120.1(3)	121.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C2-C1	113 6(3)	110.7
$\begin{array}{ccccccc} 112.2(3) & 112.5 \\ $	N1-C3-C4	110.1(3)	110.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C3-C5	112.2(3)	112.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C3-C6	108.4(4)	112.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C3-C5	108.2(4)	107.4
$\begin{array}{cccccccc} C5-C3-C6 & 108.1(3) & 106.9 \\ N1-C7-C11 & 115.7(3) & 115.6 \\ C7-C11-C12 & 121.1(3) & 120.8 \\ C7-C11-C16 & 120.9(4) & 120.9 \\ C12-C11-C16 & 117.7(4) & 118.1 \\ C11-C12-C13 & 121.4(4) & 120.8 \\ C12-C13-C14 & 119.5(5) & 119.9 \\ C13-C14-C15 & 120.7(4) & 119.6 \\ C14-C15-C16 & 120.0(4) & 120.0 \\ C11-C16-C15 & 120.7(4) & 120.7 \\ \hline Torsion angles \\ \hline O1-Cu-N1-C3 & -99.4(2) & -96.8 \\ N1-Cu-O1-C1 & -9.6(2) & -5.8 \\ Cu-O1-C1-C2 & -3.7(4) & -13.9 \\ Cu-N1-C2-C1 & -25.7(3) & -33.6 \\ \hline \end{array}$	C4-C3-C6	109.9(4)	106.6
$\begin{array}{ccccccc} \text{N1-C7-C11} & 115.7(3) & 115.6 \\ \text{C7-C11-C12} & 121.1(3) & 120.8 \\ \text{C7-C11-C16} & 120.9(4) & 120.9 \\ \text{C12-C11-C16} & 117.7(4) & 118.1 \\ \text{C11-C12-C13} & 121.4(4) & 120.8 \\ \text{C12-C13-C14} & 119.5(5) & 119.9 \\ \text{C13-C14-C15} & 120.7(4) & 119.6 \\ \text{C14-C15-C16} & 120.0(4) & 120.0 \\ \text{C11-C16-C15} & 120.7(4) & 120.7 \\ \hline \textit{Torsion angles} \\ \hline \\ \hline \\ O1-Cu-N1-C3 & -99.4(2) & -96.8 \\ \text{N1-Cu-O1-C1} & -9.6(2) & -5.8 \\ \text{Cu-O1-C1-C2} & -3.7(4) & -13.9 \\ \text{Cu-N1-C2-C1} & -25.7(3) & -33.6 \\ \hline \end{array}$	C5-C3-C6	108.1(3)	106.9
$\begin{array}{ccccccc} C7-C11-C12 & 121.1(3) & 120.8 \\ C7-C11-C16 & 120.9(4) & 120.9 \\ C12-C11-C16 & 117.7(4) & 118.1 \\ C11-C12-C13 & 121.4(4) & 120.8 \\ C12-C13-C14 & 119.5(5) & 119.9 \\ C13-C14-C15 & 120.7(4) & 119.6 \\ C14-C15-C16 & 120.0(4) & 120.0 \\ C11-C16-C15 & 120.7(4) & 120.7 \\ \hline Torsion angles \\ \hline O1-Cu-N1-C3 & -99.4(2) & -96.8 \\ N1-Cu-O1-C1 & -9.6(2) & -5.8 \\ Cu-O1-C1-C2 & -3.7(4) & -13.9 \\ Cu-N1-C2-C1 & -25.7(3) & -33.6 \\ \hline \end{array}$	N1-C7-C11	115.7(3)	115.6
$\begin{array}{cccccccc} \hline C7-C11-C16 & 120.9(4) & 120.9 \\ \hline C12-C11-C16 & 117.7(4) & 118.1 \\ \hline C11-C12-C13 & 121.4(4) & 120.8 \\ \hline C12-C13-C14 & 119.5(5) & 119.9 \\ \hline C13-C14-C15 & 120.7(4) & 119.6 \\ \hline C14-C15-C16 & 120.0(4) & 120.0 \\ \hline C11-C16-C15 & 120.7(4) & 120.7 \\ \hline Torsion angles \\ \hline O1-Cu-N1-C3 & -99.4(2) & -96.8 \\ \hline N1-Cu-O1-C1 & -9.6(2) & -5.8 \\ \hline Cu-O1-C1-C2 & -3.7(4) & -13.9 \\ \hline Cu-N1-C2-C1 & -25.7(3) & -33.6 \\ \hline \end{array}$	C7-C11-C12	121.1(3)	120.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-C11-C16	120.9(4)	120.9
$\begin{array}{ccccccc} C11-C12-C13 & 121.4(4) & 120.8 \\ C12-C13-C14 & 119.5(5) & 119.9 \\ C13-C14-C15 & 120.7(4) & 119.6 \\ C14-C15-C16 & 120.0(4) & 120.0 \\ C11-C16-C15 & 120.7(4) & 120.7 \\ \hline \end{tabular} \\ \hline tabular$	C12-C11-C16	117.7(4)	118.1
$\begin{array}{c} \text{C12-C13-C14} & 119.5(5) & 119.9 \\ \text{C13-C14-C15} & 120.7(4) & 119.6 \\ \text{C14-C15-C16} & 120.0(4) & 120.0 \\ \text{C11-C16-C15} & 120.7(4) & 120.7 \\ \hline \textit{Torsion angles} \\ \hline \\ \text{O1-Cu-N1-C3} & -99.4(2) & -96.8 \\ \text{N1-Cu-O1-C1} & -9.6(2) & -5.8 \\ \text{Cu-O1-C1-C2} & -3.7(4) & -13.9 \\ \text{Cu-N1-C2-C1} & -25.7(3) & -33.6 \\ \hline \end{array}$	C11-C12-C13	121.4(4)	120.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-C13-C14	119.5(5)	119.9
$\begin{array}{c} \text{C14-C15-C16} & 120.0(4) & 120.0\\ \text{C11-C16-C15} & 120.7(4) & 120.7\\ \hline \textit{Torsion angles} \\ \hline \text{O1-Cu-N1-C3} & -99.4(2) & -96.8\\ \text{N1-Cu-O1-C1} & -9.6(2) & -5.8\\ \text{Cu-O1-C1-C2} & -3.7(4) & -13.9\\ \text{Cu-N1-C2-C1} & -25.7(3) & -33.6\\ \hline \end{array}$	C13-C14-C15	120.7(4)	119.6
C11-C16-C15120.7(4)120.7Torsion anglesO1-Cu-N1-C3 $-99.4(2)$ -96.8 N1-Cu-O1-C1 $-9.6(2)$ -5.8 Cu-O1-C1-C2 $-3.7(4)$ -13.9 Cu-N1-C2-C1 $-25.7(3)$ -33.6	C14-C15-C16	120.0(4)	120.0
Torsion angles O1-Cu-N1-C3 -99.4(2) -96.8 N1-Cu-O1-C1 -9.6(2) -5.8 Cu-O1-C1-C2 -3.7(4) -13.9 Cu-N1-C2-C1 -25.7(3) -33.6	C11-C16-C15	120.7(4)	120.7
$\begin{array}{cccc} \text{O1-Cu-N1-C3} & -99.4(2) & -96.8 \\ \text{N1-Cu-O1-C1} & -9.6(2) & -5.8 \\ \text{Cu-O1-C1-C2} & -3.7(4) & -13.9 \\ \text{Cu-N1-C2-C1} & -25.7(3) & -33.6 \end{array}$	Torsion angles		
N1-Cu-O1-C1 $-9.6(2)$ -5.8 Cu-O1-C1-C2 $-3.7(4)$ -13.9 Cu-N1-C2-C1 $-25.7(3)$ -33.6	O1-Cu-N1-C3		-96.8
Cu-O1-C1-C2 -3.7(4) -13.9 Cu-N1-C2-C1 -25.7(3) -33.6	N1-Cu-O1-C1	-9.6(2)	-5.8
Cu-N1-C2-C1 -25.7(3) -33.6	Cu-O1-C1-C2	-3.7(4)	-13.9
	Cu-N1-C2-C1	-25.7(3)	-33.6

	Experimental*	Theoretical (M6)
01-C1-C2-N1	22.0(4)	34.8
Cu-N1-C3-C4	- 58.7(4)	-48.0
Cu-N1-C7-C11	- 53.9(4)	- 55.1
N1-C7-C11-C12	-92.1(5)	-87.2
C7-C11-C12-C13	-176.9(4)	173.8
C7-C11-C16-C15	176.4(4)	174.1
C11-C12-C13-C14	1.2(8)	4.5
C12-C13-C14-C15	0.7(8)	2.3
C13-C14-C15-C16	-1.2(8)	-2.6
C14-C15-C16-C11	-0.2(8)	- 3.9

Table 2 continued

*Symmetry code: -x, -y, -z.

Figure 1 An ORTEPII drawing of the molecule showing the numbering system. Thermal ellipsoids are shown at the 35% probability level. The hydrogen atoms are shown as spheres of arbitrary radius.

Conformational analysis

The conformational potential was calculated from the basic formula (1)

$$\phi_{T} = \frac{1}{2} \sum_{i} k_{d,i} (d_{i} - d_{i,o})^{2} + \frac{1}{2} \sum_{j} k_{\theta,j} (\theta_{j} - \theta_{o,j})^{2} + \frac{1}{2} \sum_{k} \phi_{n} (1 \pm \cos n\gamma_{k}) + \sum_{l} (A_{l} \exp(-B_{l} r_{l}))^{2} + C_{l} r_{l}^{-6} + \frac{1}{2} \sum_{m} k_{\chi,m} \chi_{m}^{2} + \frac{1}{2} k_{\beta} (\beta - \beta_{o})^{2} + \phi_{cis} + \phi_{trans} + \phi_{el}$$
(1)

where d, θ , γ and χ stand for bond lengths, valence, torsional and out of plane angles, respectively; r is a non-bonded distance. K_d is an empirical parameter for bond stretching and k_{θ} for valence angle bending. Torsional interactions were determined with parameters ϕ_n and n (height and multiplicity of torsional barrier, respectively) and non-bonded interactions were computed from a Buckingham function with parameters A, B and C. In addition, the out-of-plane deformation potential for carboxyl groups and benzene ring with a quadratic function dependent on parameter k_x was also taken into account.

The last four terms in equation (1) correspond to interactions specific for the copper coordination polyhedron. We altogether have proposed three kinds of models. They are a "dummy" atom model (FF1-FF3a),^{24,25} a model with a distortion potential $(M3-M5)^{12-14}$ and an electrostatic model (M6).¹⁵ The quadratic potential dependent on distortion coordinate β and parameters β_o and k_{β} is specific for force field M3-M5. The potentials ϕ_{cis} and ϕ_{trans} are angle-bending potentials for the angles around copper, which can be quadratic (a "dummy" atom model and M3) or in the form of a cosine power series (M4, M5); ϕ_{el} is the coulombic potential between the charges situated around the copper atom (M6). A short overlay of models and parameters was given elsewhere.⁷ Calculations were performed with a program developed by K. Rasmussen and coworkers.²⁶

Similarity between the structures was expressed by the root-mean-square deviation (2)

$$\varepsilon_{\mathrm{r.m.s.}} = \left(\frac{1}{N} \sum_{i=1}^{N} (\Delta X_i)^2\right)^{1/2}$$
(2)

where X stands for valence angles, θ , around copper when comparing the copper coordination geometry, or the interatomic distance, r, when checking the overall similarity (only non-hydrogen atoms are taken into account). Δ denotes the difference between the values of the observable X in two structures.

RESULTS AND DISCUSSION

The structure contains discrete molecules separated by normal van der Waals interactions. The molecule lies in the 2(a) special position of the space group with the copper atom on a centre of inversion. The copper atom has the expected irregular square-planar coordination, with oxygen and nitrogen atoms in *trans* positions, with Cu-O and Cu-N bond distances 1.874(2) and 2.112(3)Å, respectively. The O-Cu-N angles (85.4(1) and 94.6(1)°) are significantly different from regularity. The C--N--C angles range from 101.9 to 114.7° with an average value of 109.5°. The average benzene

C—C distance is 1.378(7)Å. There are no unusual *intra*molecular bond distances and angles. The crystal geometry was fairly well reproduced with molecular mechanics calculations. Best results were obtained with the electrostatic model (M6) which yielded $\varepsilon_{r.m.s.}(\Delta r) = 0.175$ Å, and reproduction of angles around the copper atom within limits of experimental error (other force fields yielded $\varepsilon_{r.m.s.}(\Delta r)$ values ranging from

No.	Ring conformation	γ ₁ (°)	γ ₂ (°)	$\phi_{\mathrm{T}}(\mathrm{kJ} \mathrm{mol}^{-1})$
1	Bz(e)	-49.53	98.55	30.85
2	Bz(e)	-40.04	-21.07	42.86
3	Bz(e)	63.57	-67.56	38.71
4	Bz(e)	177.42	-118.58	36.62
5	Bz(a)	60.50	116.02	40.35
6	Bz(a)	-62.81	84.82	24.89
7	Bz(a)	- 174.90	79.73	37.92

Table 3Minima of conformational energy for the chelate ring ofbis(N-tert-butyl-N-benzylglycinato)copper(II)*

*Calculations were carried out with force field FF3a. Torsion angles γ_1 and γ_2 correspond to angles Cu-N1-C7-C11 and N1-C7-C11-C12, respectively.

Table 4Minima of conformation energy forbis(N-tert-butyl-N-benzylglycinato)copper(II)*

<u> </u>		FF3a	FF3a		M6	
Conformation		R,R	R,S	R,R	R,S	
1	1	0.00	13.05	0.00	13.33	
1	2		10.67		9.62	
1	3	20.70	36.24	19.25	35.44	
1	4	14.06	15.69	13.65	15.53	
1	5	14.64	14.70	13.39	13.68	
1	6		1.80		1.64	
1	7	24.82	19.10	23.17	18.57	
2	3		30.99		28.96	
2	4	12.39	10.68	12.56	10.13	
2	5		30.60		27.09	
2	7	19.79	22.72	18.22	20.33	
3	3	46.90		44.13	63.55	
3	4		41.62		40.50	
4	4	24.35	22.81	10.13	22.35	
4	5	24.50	25.83	23.31	24.61	
4	6	13.38	12.61	13.07	12.06	
4	7	35.00	32.41	33.27	31.32	
5	5		35.68		32.59	
5	7	23.31	36.06	22.62	32.53	
6	6		26.35		23.51	
6	7	10.88	24.01	11.30	20.47	
7	7	29.11	46.18	29.00	40.39	

*All energy values are expressed in kJ mol⁻¹ with respect to the lowest conformer $\phi_0 = 53.883$ kJ mol⁻¹ (FF3a), $\phi_0 = 903.656$ kJ mol⁻¹ (M6). Only conformers with relative conformation energy less than 50 kJ mol⁻¹ were considered. For definition of force fields (FF3a and M6) see Experimental.

0.185 (FF3) to 197Å (FF3a) and $\varepsilon_{r.m.s.}(\Delta\theta)$ from 1.32 (FF3) to 2.38° (FF2)). The results obtained with force field M6 are comparable with reproduction of crystal geometry of similar molecules.¹⁵

Given that the chelate ring can adopt two conformations (axial and equatorial positions of the benzyl group) and three conformations of the benzyl group (torsion angle Cu-N1-C7-C11), at least six conformations of the chelate ring of bis(*N*-tert-butyl-*N*-benzylglycynato)copper(II) can be proposed. By a systematic search of conformational space, however, seven conformers were obtained (Table 3), due to two possible orientations of the benzene ring in the (Bz(e), $\gamma_1 \sim -60^\circ$) conformer. It is of interest to note that the ring conformation observed in the crystal (1, Table 3) is not the most stable conformation; its energy is 5.96 kJ mol⁻¹ higher than the energy of axial conformer 6.

By combination of ring conformations, it is possible to propose 7(7+1)/2=28 conformations for the *R*,*R* and the same number of conformations for the *R*,*S* isomer. Due to very high interangular strain in most conformations, after minimization of conformational energy, only 36 conformations with acceptability low energy (i.e., $50 \text{ kJ} \text{ mol}^{-1}$ over the global minimum) were obtained (Table 4). Surprisingly, the conformation observed in the crystal state (1-1*R*,*S*) appears not to be the most stable; there are four *R*,*S* and three *R*,*R* conformers with lower strain energy. Essentially the same result was obtained with two quite different force fields (FF3a and M6). The fact that the crystal conformation does not correspond to the global minimum is not altogether surprising. All force fields gave consistent results yielding energy differences between 1-1R,R and 1-1R,S isomers ranging from $11.28 \text{ kJ} \text{ mol}^{-1}$ (FF1) to $13.72 \text{ kJ} \text{ mol}^{-1}$ (FF3). Moreover, in closely related systems with the same force fields, molecular mechanics calculations correctly predicted the crystal conformation.^{6,7,10,16} Presumably, *inter*-molecular packing effects favour the conformation found in the crystal in this case.

Acknowledgements

This reseaarch was sponsored by the NSERC Canada with financial support through the award of an Operating Grant (to G.F.) and a visiting professorship (to B.K.). Thanks are aso due to Professor K. Rasmussen who kindly supported us with the program for conformational analysis and the Croatian Ministry for Science, Technology and Information.

References

- 1. G.G. Aleksandrov, Yu.T. Struchkov and A.A. Kurganov, Zh. Strukt. Khim., 14, 492 (1973).
- T.G. Fawcett, M. Ushay, J.P. Rose, R.A. Lalancette, J.A. Potenza and H.J. Schugar, *Inorg. Chem.*, 18, 327 (1979).
- 3. M.A. Hitchmann, L. Kwan, L.M. Engelhardt and A.H. White, J. Chem. Soc., Dalton Trans., 457 (1987).
- 4. D. van der Helm, M.B. Lawson and E.L. Enwall, Acta Cryst., B27, 2411 (1971).
- 5. I.A. Dyakon, S.V. Donu, L.F. Chapurina and A.S. Avilov, Kristallografia, 29, 384 (1984).
- 6. B. Kaitner, B. Kamenar, N. Paulić, N. Raos and Vl. Simeon, J. Coord. Chem., 15, 373 (1987).
- 7. B. Kaitner, N. Paulić and N. Raos, J. Coord. Chem., 22, 269 (1991).
- G.G. Aleksandrov, Yu.T. Struchkov, A.A. Kurganov, S.V. Rogozhin and V.A. Davankov, Zh. Strukt. Khim., 13, 671 (1972).
- R. Calvo, M.A. Mesa, G. Oliva, J. Zukerman-Schpector, O.R. Mascimento, M. Tovar and R. Ace, J. Chem. Phys., 81, 4584 (1984).
- 10. B. Kaitner, G. Ferguson, N. Paulić and N. Raos, J. Coord. Chem., 26, 105 (1992).

- V.A. Davankov, S.V. Rogozhin, A.A. Kurganov and L.Ya. Zhuchkova, J. Inorg. Nucl. Chem., 37, 369 (1975).
- 12. J. Sabolović, N. Raos and K. Rasmussen, Croat. Chem. Acta, 62, 495 (1989).
- 13. J. Sabolović and N. Raos, Polyhedron, 9, 1277 (1990).
- 14. J. Sabolović, N. Raos and K. Rasmussen, Polyhedron, 10, 2079 (1991).
- 15. J. Sabolović and N. Raos, Polyhedron, 9, 2419 (1990).
- 16. B. Kaitner, G. Ferguson, N. Paulić and N. Raos, J. Coord. Chem., 26, 95 (1992).
- 17. L.B. Kier and D. Dhawan, J. Pharm. Sci., 51, 1058 (1962).
- 18. L. Velluz, G. Amiard and R. Heymes, Bull. Soc. Chim. France, 201 (1955).
- 19. P.C. Nash nd W.P. Schaefer, J. Amer. Chem. Soc., 91, 1319 (1969).
- 20. A. Walker and D. Stuart, Acta Cryst., A39, 159 (1983).
- 21. B.A. Frenz and Associates Inc., SDP-Plus Structure Determination Package. College Station, Texas 77840, USA, and Enraf-Nonius, Delft, The Netherlands (1983).
- 22. E.J. Gabe, Y. Le Page, J-P. Charland, F.L. Lee and P.S. White, J. Appl. Cryst., 22, 384 (1989).
- C.K. Johnson, ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA (1976).
- 24. N. Raos, S.R. Niketić and Vl. Simeon, J. Inorg. Biochem., 16, 1 (1982).
- 25. N. Raos and Vl. Simeon, Croat. Chem. Acta, 58, 127 (1985).
- S.R. Niketić and K. Rasmussen, "The Consistent Force Field: A Documentation", (Springer-Verlag, Berlin, 1977); K. Rasmussen, "Potential Energy Functions in Conformational Analysis", (Springer-Verlag, Berlin, 1985).